Multi task learning with general vector space for cross-lingual semantic relation detection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-lingual adaptation with multi-task adaptive networks

Posterior-based or bottleneck features derived from neural networks trained on out-of-domain data may be successfully applied to improve speech recognition performance when data is scarce for the target domain or language. In this paper we combine this approach with the use of a hierarchical deep neural network (DNN) network structure – which we term a multi-level adaptive network (MLAN) – and ...

متن کامل

A Cross-lingual Annotation Projection Approach for Relation Detection

While extensive studies on relation extraction have been conducted in the last decade, statistical systems based on supervised learning are still limited because they require large amounts of training data to achieve high performance. In this paper, we develop a cross-lingual annotation projection method that leverages parallel corpora to bootstrap a relation detector without significant annota...

متن کامل

Multi-task Vector Field Learning

Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the mani...

متن کامل

Cross-lingual Semantic Generalization for the Detection of Metaphor

In this work, we describe a supervised cross-lingual methodology for detecting novel and conventionalized metaphors that derives generalized semantic patterns from a collection of metaphor annotations. For this purpose, we model each metaphor annotation as an abstract tuple – (source, target, relation, metaphoricity) – that packages a metaphoricity judgement with a relational grounding of the s...

متن کامل

A Multi-task Learning Approach to Adapting Bilingual Word Embeddings for Cross-lingual Named Entity Recognition

We show how to adapt bilingual word embeddings (BWE’s) to bootstrap a crosslingual name-entity recognition (NER) system in a language with no labeled data. We assume a setting where we are given a comparable corpus with NER labels for the source language only; our goal is to build a NER model for the target language. The proposed multi-task model jointly trains bilingual word embeddings while o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of King Saud University - Computer and Information Sciences

سال: 2020

ISSN: 1319-1578

DOI: 10.1016/j.jksuci.2020.08.002